Dissecting colloidal stabilization factors in crowded polymer solutions by forming self-assembled monolayers on gold nanoparticles.
نویسندگان
چکیده
An ideal colloidal system should be highly stable in a diverse range of buffer conditions while still retaining its surface accessibility. We recently reported that dispersing citrate-capped gold nanoparticles (AuNPs) in polymers, such as polyethylene glycol (PEG), can achieve such a goal because of contributions from depletion stabilization. Because AuNPs can weakly adsorb PEG to exert steric stabilization and the remaining citrate can impart charge stabilization, the extent of the contribution of depletion stabilization is unclear. In this work, we aim to dissect the contribution of each stabilizing factor. This is achieved by coating AuNPs with a layer of thiolated compound, which inhibits the adsorption of PEG and also allows for the control of surface charge. We found that depletion stabilization alone was insufficient to stabilize AuNPs at room temperature. However, when working together with other stabilization mechanisms, ultrahigh stability can be achieved. The size of both AuNPs and PEG was systematically varied, and the trends were compared to theoretical calculations. Finally, we report the importance of the surface chemistry of commercial AuNPs.
منابع مشابه
Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملEngineering Nano-aggregates: β-Cyclodextrin Facilitates the Thiol-Gold Nanoparticle Self-Assembly
The structure and morphology of nonmaterial formed by colloidal synthesis represent a subject of interest as it is a factor deciding the physicochemical properties and biological applications of nanostructures. Among various nanoparticles, gold can develop fractal assembled patterns. Herein, we report a nano-aggregate of a thiol-on-gold self-assembled structure and the influence of β-cyclodextr...
متن کاملHydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd
Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...
متن کاملNanoscale force induced size-selective separation and self-assembly of metal nanoparticles: sharp colloidal stability thresholds and hcp ordering.
A simple and versatile nanoscale force induced precipitation approach for the separation of gold nanoparticles (AuNPs) was developed. The AuNPs show sharp size-dependent colloidal stability thresholds as a function of salt concentration. Upon separation, the AuNPs were electrostatically self-assembled onto silicon substrates by fine-tuning interparticle and particle-substrate forces, forming 2D...
متن کاملA simple protocol to stabilize gold nanoparticles using amphiphilic block copolymers: stability studies and viable cellular uptake.
Di- and triblock non-ionic copolymers based on poly(ethylene oxide) and poly(propylene oxide) were studied for the stabilization of nanoparticles in water at high ionic strength. The effect of the molecular architecture (di- vs. triblock) of these amphiphilic copolymers was investigated by using gold nanoparticles (AuNPs) as probes for colloidal stability. The results demonstrate that both di- ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 29 20 شماره
صفحات -
تاریخ انتشار 2013